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We assess the value added of a multi-factor portfolio from
a performance-agnostic point of view. First we introduce a
broad general definition of factor, that encompasses usual
factors like Size or Value, then we prove that static long-
short multi-factor strategies (as the equal weighting of fac-
tors) are indeed factors according to our definition. This
result is new in the literature and states that, by investing
in a long-short static multi-factor strategy, one is indeed in-
vesting into a new (synthetic) factor. Finally we test the
strength of such a synthetic factor compared to each sin-
gle factor by looking at its predictive power. We empirically
test the equal-weighting of Value, Size, Momentum and Low
Volatility in the US and Europe. Our conclusion is very clear
in both regions: the equal-weighting of these four standard
factors is a synthetic factor that has no predictive power on
stocks’ return, while each of the factors shows clear ability to
distinguish among stocks. In other words, the measure that
underlies this equal-weighting of factors has zero predictive
power on cross-sectional differences in stocks’ returns.

Key words: Factor Investing, Multi-Factor Portfolio Con-
struction, Predictive Power, Return Forecast.
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1 Introduction

Factor investing has gained popularity among investors because it enables them to access
well-known risk premia in the equity market, in a transparent and rule-based way. By
using few robust and economically sound factors, investors can build modern portfolios
by targeting their factor exposures, or by implementing their views on the behavior of
each factor. Single-factor investment vehicles have known a large success, measured in
terms of inflows and number of products. Worldwide listed Smart Beta products, the
marketing labeling for factor investing, account for almost 700 USD billions and roughly
1,300 products according to ETFGI (2017)], with a growth rate of 30% per year since
2008. Eventually the logical move would be from the massive use of single-factor to
multi-factor strategies. Literature, very little to our knowledge, unanimously agrees on
the superior power of factor combinations, which usually bring value to the final portfolio
(see for example Garff (2014) or Bender and Wang (2016)).

But we must recognize that multi-factor strategies, by definition, cannot be unique.
Indeed, different investors should have different approaches as their final objectives can
be significantly different, from both a risk and a horizon point of view (see Bender
et al. (2013)). The three issues that are currently debated are the choice of factors, the
allocation method and the use of a static versus dynamic approach.

Alighanbari and Chia (2016) compare static and dynamic multi-factor strategies. The
static one is a simple equal weighting of six factors (Size, Value, Momentum, Volatility,
Dividend and Quality) while the dynamic ones use fundamental data to weight each
factor. They conclude that their fundamental based, dynamic strategies deliver higher
returns, but come with higher turnover and greater complexity. We also distinguish
between integrating multi-factor techniques (which allocate to stocks that have simulta-
neous exposures to the factors) and mixing techniques (that achieve the desired factor
exposure by allocating across different single factors). Chow et al. (2017) for example
show that the integrating technique is superior to the mixing technique, even if the
former shows higher turnover and higher idiosyncratic risk. Superior properties of the
integration technique are also shown in Bender and Wang (2015, 2016) and Fitzgibbons
et al. (2017).

The static approach is nevertheless still favored in the industry, as it provides signif-
icant results without introducing complex frameworks. For example Blitz (2012, 2015)
shows how a simple equal weighting of Value, Momentum and Low-Volatility delivers
superior risk-adjusted returns when compared to each single factor. Similarly, Bender
et al. (2010) find that using a combination of risk premia across different asset classes
gives similar returns to a 60/40 equity/bond benchmark but with 65% less volatility.
The most tempting dynamic approach would include a factor-timing mechanism. Pro-
ponents of such techniques usually adopt active-management decisions, based, among
other considerations, on macro-economic and financial data, sentiments, political out-
comes, etc. Systematic approaches, on the other hand, make use of valuations as the
key driver for factor timing. For example Arnott et al. (2016a,b, 2017) link factor cheap-
ness with positive performances. Opposed to such attempts, Asness and his coauthors
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((Asness, 2016; Asness et al., 2017)) stress the difficulty of factor timing and how de-
ceptive this could be, out-of-sample, when one accounts for fees and transaction costs.
As Asness (2016) states ... “Factor timing has the potential of reintroducing a type of
skill-based ’active management’ (as timing is generally thought of this way) back into the
equation.” Indeed, factor investing has been used as the framework within which active
managers’ performances were decomposed into alpha and beta(s), so that alternative
beta was not taken as alpha. The question whether one should seek factor timing or
long-term static approaches remains unanswered. Our paper takes a different approach
and focuses instead on the ability to forecast stock returns. First, we introduce a general
definition of “factor” that encompasses usual factors like Size or Value. Our definition
is very general and does not require the factor to be economically relevant, which is
mandatory from a practical point of view.

To define a general factor, we need a measure (ex. stock valuation), a partition based
on this measure (ex. three buckets) and an allocation scheme (ex. long on the highest
bucket and short on the lowest, equal weighting within each bucket). Fama-French’s
factors (Fama and French, 1993) fit our definition. With this definition, we are able
to prove that static long-short multi-factor strategies (ex. equal weighting of factors)
are indeed factors according to our definition and we are able to explicitly characterize
the underlying measure, the partition and the scheme. This result is very new in the
literature, and states that by investing in a static long-short multi-factor strategy, one is
indeed investing in a new (synthetic) factor. Unfortunately, it is not easy to derive the
economic logic behind the underlying measure (as it is for Size, Value, Low Volatility
or Momentum). Finally, we test the strength of such a “synthetic factor” compared to
each single factor by looking at its predictive power. The reason for this is that, from
a performance/risk perspective, we already know that by mixing different factors, we
end up with their average return (if we do not consider compounding effects) with lower
volatility due to diversification. Our measure assesses the power of a factor when it
comes to forecasting stock returns.

We empirically test the equal weighting of Value, Size, Momentum and Low Volatility
in the US and Europe. Our conclusion is very clear in both realms: the equal weighting
of these four standard factors is a synthetic factor that has no predictive power on stock
returns, while each factor shows clear ability to discriminate among stocks, except for
Size for which results are slightly puzzling. In other words, the measure that underlies
this equal weighting of factors has zero predictive power on cross-sectional differences in
stock returns. One of the reasons for this is that by equally weighing factors, exposures
are mostly netted out so that the final stock weights are very noisy.
We truly believe that multi-factor portfolios are the logical evolution of modern portfo-
lio construction. But, as of today, the majority of commercially available multi-factor
strategies are mainly static, and their value added only come as a result of diversifica-
tion, which is a good thing after all. Investors should be aware that combining different
factors may lead to a final netted exposure similar to a random tilted portfolio.
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Echoing the debate opposing proponents of factor timing to proponents of static alloca-
tions, we add that although factor timing is a difficult exercise, we remain cautious about
the assumption that static allocation schemes are the best way of integrating factors in
the portfolio.

2 Single factor

Since the very beginning of its academic foundation, a factor is a long-short portfo-
lio that reflects the differences in performance between stocks with regard to a specific
characteristic. The initial Size and Value factors in Fama and French (1993) are long-
short portfolios that exploit the differences between small and large companies (the
characteristic is the market capitalization) and between value and growth stocks (the
characteristic is the book-to-market ratio). Together with the market portfolio, this so-
called three-factor model extended the traditional CAPM model (Sharpe, 1964; Lintner,
1965). Later, Carhart (1997) extended the three factor model with Momentum, once
again a long-short portfolio that exploits the empirical evidence of performance differ-
ences between stocks with respect to their most recent performances. Since then, both
the financial and the academic communities have seen a surge of new factors. We do
not want to overstate on their alleged validity and economic foundations as we remain
skeptical. Actually, many of these factors turn out to be the result of data mining, errors
or in-sample anomalies (Hsu and Kalenik, 2014; Harvey et al., 2016; McLean and Pontiff,
2016). The common traits of all these factors are summarized in the following:

Measure: The characteristic that is able to explain cross-sectional differences in stock
returns.

Factor Construction: The transfer of the measure into portfolio weights.

As an example, the initial three-factor model by Fama and French (1993) used market
capitalization (Size) and book-to-market (Value), and a factor construction technique
that allows for reduction in correlation between them based on double sorting. In an
attempt to generalize the modern factor construction, we introduce the following:

Definition 2.1. For a given investment universe of size n, let (Ci)i=1,...,n be a generic
characteristic measure associated with each stock in the investment universe and (Ls)s=1,...,l

be a disjoint partition of the measure:

l⋃
s=1

Ls =

[
min
i
Ci,max

i
Ci

]
We denote ls := card {i = 1, . . . , n | Ci ∈ Ls}, which essentially counts the number of
stocks whose measures lie in the bucket Ls. Let j be the map that identifies each Ci into
the unique subset of the partition L:

∀ i = 1, . . . , n, j(i) verifies Ci ∈ Lj(i)
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and α = (α1, . . . , αl) such that
∑
αs = 0.

A Factor F = F (C,L, α) where C is the measure and L,α the factor construction is
the long-short portfolio where stock weights are defined as follows:

Wi :=
αj(i)

lj(i)
(2.1)

We illustrate the Definition 2.1 on the Fama-French HML factor, defined as

HML = 1/2(SmallV alue+BigV alue)− 1/2(SmallGrowth+BigGrowth).

If Ci := (BEi,MEi) denotes the couple book-to-market and market capitalization and

L1 :=
{
Ci |MEi ≤ median(ME), BEi ≥ 70thpercentile

}
L2 :=

{
Ci |MEi ≤ median(ME), 30thpercentile ≤ BEi < 70thpercentile

}
L3 :=

{
Ci |MEi ≤ median(ME), BEi < 30thpercentile

}
L4 :=

{
Ci |MEi > median(ME), BEi ≥ 70thpercentile

}
L5 :=

{
Ci |MEi > median(ME), 30thpercentile ≤ BEi < 70thpercentile

}
L6 :=

{
Ci |MEi > median(ME), BEi < 30thpercentile

}

then HML is a factor as per Definition 2.1 if we consider αHML = (1/2, 0,−1/2, 1/2, 0,−1/2).
Exhibit 1 gives a graphic view of the factor construction.

Exhibit 1: Construction scheme for Fama-French HML factor.

Our definition, although very general, essentially formalizes the modern way of building
factor as long-short portfolios: once one has a measure that represents the characteristics,
it is very common to slice it into different blocks (buckets L) and within each block
equally weighting stocks. Definition 2.1 does not require the factor to be economically
relevant.

Multi-factor portfolios: A new factor? Limits of the static approach.
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3 Multi-factor

Investors have nowadays accepted the existence of a (small) number of economically
relevant factors backed by academic research. There are multiple ways to use these
factors, among others:

Performance analysis. Investors measure their portfolios exposures to each factor
and disentangle the sources of their performances into beta (coming from their exposures
to various factors) and alpha (manager skills).

Risk control. Investors shape their portfolios to manage exposures to unwanted fac-
tors. Their financial objective remains unchanged, but the factor exposures are directly
managed according to their guidelines.

Tactical exposure. Investors tilt their portfolios to various factors in line with their
views of the market, the economy and their subjective beliefs.

Multi-factor approach. Investors understand the existence of a positive expected
return (premium) attached to the factors over the long run. Therefore they build their
portfolios exposed to all the factors while benefiting from potential diversification.

The multi-factor approach has gained interest among investors because it is an elegant
solution and suits their needs: a well-diversified portfolio, with explicit and targeted risks
and well-identified performance drivers. Furthermore, it can be efficiently implemented
through passive and low-cost funds such as ETFs. However, the question surround-
ing the optimal combination of factors remains mostly unanswered. Because factors
underperformance can last for several quarters, the most appealing solution would be
factor timing. Unfortunately, factor timing is a very difficult exercise and could lead to
higher risk. This is counter-intuitive given the fact that one of the initial goals of the
multi-factor approach is to spread risk across uncorrelated drivers of performances in
a controlled way. As a matter of fact, the majority of investors use very simple meth-
ods of factor allocation, and the equal weighting of factors is by far the most popular.
Furthermore, many multi-factor products available in the market (especially in the ETF
format) are indeed an equally weighted allocation of factors.

The main result of this paper is that equal weighting of factors synthetically creates a
new factor. Although this is not necessarily a negative outcome, investors should be
aware that their static equal weight multi-factor approach is essentially a new factor in
the sense of Definition 2.1. This implies, among other things, that investors are expecting
that the measure associated with this new factor should be able to discriminate stock
performances.

Multi-factor portfolios: A new factor? Limits of the static approach.
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Theorem 3.1. Let W h, h = 1, . . . ,K be the stock weightings within K different factors
as in (2.1). Then the equally-weighted multi-factor portfolio, whose weights are given by

WMF
i :=

1

K

K∑
h=1

W h
i

is also a factor in the sense of Definition 2.1.
More precisely there exists a measure (i.e. a stock characteristic) CMF , a disjoint par-
tition LMF and a vector of coefficient αMF such that

WMF
i =

αMF
j(i)

lMF
j(i)

The proof of this result is given in Appendix A.

The result can be easily extended to any other static combination of factors.

Corollary 3.2. Let W h, h = 1, . . . ,K be the stock weightings within K different factors
as in (2.1). If π is an arbitrary static allocation scheme (πh ∈ R and

∑
h πh = 1) then

the multi-factor portfolio, whose weights are given by

WMF
i :=

K∑
h=1

πhW
h
i

is also a factor in the sense of Definition 2.1.

The proof of this result is given in Appendix B.

Corollary 3.2 sheds lights on the static combination of factors. Indeed, if the weighting
scheme is static then it is possible to build a composite measure such that the multi-
factor portfolio is a factor. This would not be true if the weighting scheme is dynamic
and depends on a different source of external information. But how good is the (syn-
thetic) measure that underlies the multi-factor portfolio in forecasting returns, especially
when compared to the standard measures that underlie factors such as for Size, Value,
Momentum or Volatility?

4 Predictive power of factors’ measures

Our definition of factor in Definition 2.1 is very general. However, in the real world,
only very few stock characteristics (measures) are able to generate meaningful factors.
Because we showed that static combinations of factors are indeed factors, it is appealing
to check whether such a combination of factors brings benefits. Indeed, as long as single
factors are meaningful, economically sound, robust and possibly with low correlation to
each other, it would make sense, from a portfolio construction perspective, to add them
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to the portfolio. What is less certain is whether a static (and most of the time, naive)
combination of factors is the right choice. The majority of academic and empirical work
on factors usually addresses the question in two ways:

• By looking at financial performances and risks of the factor (ex: does the factor
outperform its benchmark over a sufficiently long period?)

• By showing that the factor is able to explain the differences in stock return.

Unfortunately, these approaches do not tell us much about the significance of a static
multi-factor portfolio. To find out more about it, we should analyze the synthetic mea-
sure that underlies the multi-factor and see if it is at least as good as the single measure
that underlies each of the individual factors. In other words, we do know that stock val-
uation is able to explain variation in future performances (on average), but what about
the measure that underlies the multi-factor?

4.1 The data

We consider two different investment universes: the US and Europe. The US universe
is represented by the S&P 1500 Index (which is the union of the S&P 500 Index [Large
Caps], S&P 400 Index [Mid Caps] and the S&P 600 Index [Small Caps]) over the period
of March 1996 to October 2017. The European universe is represented by the Stoxx
Europe TMI Index (which contains a variable number of stocks between 900 and 1100)
over the period of December 2000 to October 2017. We consider four factors: Size (the
relative measure is the inverse of the stock weight within the respective index), Value
(the measure is the stock earning- to-price ratio), Momentum (the measure is the one-
year stock return) and Volatility (the measure is the inverse of the one-year rolling stock
volatility).
Single factors are constructed according to Definition 2.1, similar to Fama and French
(1993) approach, except that we do not double-sort for the sake of simplicity. The
factors go long stocks with higher measures and short stocks with lower measures. The
factors are rebalanced on the last business day of the month and data is sampled four
days before. We also consider versions with lower frequencies (quarterly, semi-annually
and annually rebalancings). Stock prices, total returns, earnings and index weights are
sourced from Thompson Reuters Datastream. The difference in the horizons between
the US and European universes depends on the availability of the reference indices we
use. Furthermore, for consistency, we use the EP ratio to build our Value factor instead
of the EB ratio, since the latter does not exist in the database with a sufficiently long
history across our 2500 stocks circa.
We consider several versions of factors depending on the number of buckets (the parti-
tions in Definition 2.1). We let this number vary from 2 to 10 to assess the robustness of
our results with respect to the factor construction. Stocks are equally weighted within
each bucket and are proportional to the vector α. We consider the following simple
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choice of α: if k is the number of buckets then:

αj =
d
∣∣j − k+1

2

∣∣e
bk/2c

sign

(
j − k + 1

2

)
(4.1)

For example, the Size factor with two buckets uses α = [−1, 1], goes short on the stocks
with lower measures of size (i.e. upper half by market capitalization), long in the other
half, and equal weight stocks within each bucket. The Value factor with five buckets
will use α = [−1,−1/2, 0, 1/2, 1]. It will go short on the first quantile based on earning-
to-price ratio and equally-weight stocks, it will go short on the second quantile, equal
weight stocks but the weights within this bucket will be divided by 2, and so on.

4.2 The significance criterion

The perfect measure (which obviously does not exist) is able to give us the full infor-
mation about future stock returns. A plot with stock measures against their forward
returns would give a straight line. On the other side of the spectrum, useless measures
(which obviously exist) do not give us any information. We call such a measure a ran-
dom pick. In this case, the plot would simply be noise, as shown in Exhibit 2. The
correlation of the perfect measure with forward returns is one, while the random pick
has correlation equal to zero. However, correlation is not adapted to our analysis. The
following example provides further information on this.

Exhibit 2: Hypothetical plots of a perfect measure and a random pick against
stock future performances.

Assume we have a perfect measure and a random pick. We build a new measure by
matching the perfect measure on the four extreme buckets and the random pick on the
six central ones (Exhibit 3). It turns out that for the parameters we selected, the corre-
lation of this measure with the forward measure is roughly 80%. This is very misleading
since for 60% (6 buckets out of 10) of the stocks, this measure is just noise. We propose

Multi-factor portfolios: A new factor? Limits of the static approach.
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Exhibit 3: Hypothetical plots of a perfect measure and a measure which is
perfect on extreme buckets and random in central buckets.

a new way to assess the significance of a measure that is closely linked to the predictive
power on the cross-sectional stock return differences.

Let C be the vector containing stock measures (ex. size) and R be the forward return
of these stocks at a given horizon (ex. three months). Fix a partition L for C (as in
Definition 2.1), let l > 0 be the number of buckets in the partition and consider the
corresponding l-quantiles for R. We count the number of stocks that belong both to the
j-th bucket of C and R. Basically, our significance criterion increases when the measure
is able to correctly map forward returns. It should be noted that we do not require the
partition L to be l-quantiles (i.e. they do not need to have the same number of elements)
but we do require that the partition on R be quantiles (i.e. they have the same number
of elements).
An example is shown in Exhibit 4. The six (l = 6) elements of the partition L1, · · · , L6

for C are mapped with the six quantiles Q1, · · · , Q6. The criterion will count the number
of stocks i for which the pair (Ci, Ri) falls in the diagonal blocks over the total number
of stocks:

H(C,R,L) :=
1

n

n∑
i=1

l∑
j=1

1Ci∈Lj and Ri∈Qj (4.2)

For the example presented in Exhibit 3, we find that the perfect measure unsurprisingly
obtains H=1, while the matched-on-extremes measure obtains H = 51%, which is more
in line with the fact that only four out of ten buckets are matched with the perfect
measure. This number compares far better than the 80% correlation. It is important to
note that the significance criterion H depends on both the quality of the measure C (its
predictive power on forward returns) and the partition L. The score H for a factor can
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11

Exhibit 4: Blocks formed by the partition L on the measure C and
the partition Q in the returns. A measure C and the
partition L will receive a high score H if the diagonal
blocks capture a significant proportion of stocks.

be calculated directly from the weights:

H(w,R,L) :=
1

n

n∑
i=1

l∑
j=1

1
wi=

αj
lj

and Ri∈Qj
(4.3)

where α is the shape in the definition of the factor and lj is the number of stocks
whose measures fall in Lj . Equation (4.3) is more adapted in practice because we do
not need to know the measure that underlies the factor, only the weights. This is
particularly useful for the multi-factor portfolio since the calculation of the weights is
straightforward, whereas the calculation of the measure (detailed in the Appendix in the
proof of Theorem 3.1) is more complex. If the measure C (and therefore weights w) is
totally random without any predictive power on forward returns, then a probabilistic
argument gives us (on average)

H(w,R,L) :=
l∑

j=1

P (C ∈ Lj) ∗ P (R ∈ Qj) =
l∑

j=1

lj
n
∗ n/l
n

=
1

l

It makes then sense to center Equation (4.3) as follows:

Hcent(w,R,L) :=
1

n

n∑
i=1

l∑
j=1

1
wi=

αj
lj

and Ri∈Qj
− 1

l
(4.4)

Hcent represents the ability of a measure C and a partition L to predict forward returns
in excess of a random pick. We think of the centered measure Hcent as a success rate
over the random pick. For the example presented in Exhibit 3 we have l = 10 buckets
so that Hcent = 51%− 1/10 = 41%.
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4.3 Empirical results: The US case

Over the period of March 1996 to October 2017, we consider the standard four factors
Size, Value, Momentum and Volatility, as well as the equally weighted multi-factor
portfolio (EW). Factors are built according to Definition 2.1. The rebalancing frequency
and the shape coefficients α vary according to the different tests we implement, while
partitions are, for the sake of simplicity, always k-quantiles. At each rebalancing, we
calculate the Hcent score of the factor against the vector of forward returns sampled at
a horizon coherent with the factor rebalancing frequency. Of course, this vector is not
observable and not known at the time the factor is built. Global Hcent scores are then
averaged over time. Exhibit 5 shows the average Hcent scores for the factors and the
EW when we let the horizon vary from 1 to 12 months. For this particular test, we built
the factor using terciles (long on the upper tercile of the measure and short on the lower
one) with α =(-1,0,1).

Horizon Size Value Momentum Volatility EW

1M -0.28% 2.18%*** 2.55%*** 0.84%** 0.19%**
3M -0.16% 2.63%*** 2.32%*** 1.10%** 0.21%**
6M -0.25% 3.14%*** 2.12%*** 1.32%** 0.19%**

12M -0.53% 4.41%*** 1.64%*** 1.82%** 0.46%**

Exhibit 5: Averages of Hcent for different factors and the EW portfolio with
different horizons. Significance: *** = 1% ** = 5% * = 10%. No
stars = loading not significant.

Although these numbers are averaged over more than 20 years, over which factors have
been through high and low performance periods according to market regimes (see for
example Guidolin and Timmermann (2008); Zhang et al. (2009); De Franco et al. (2017)),
it gives an important insight about the predictive power of the factors.

First of all, we find that stock valuation (Value) is indeed a characteristic with a
significant predictive power, which also increases with the horizon. When we rebalance
the Value factor monthly (1M) and we look at 1-month ahead performances, on average,
Value is able to correctly predict the tercile in which the return will belong better than
random pick. Indeed, random pick would do this job with 1/3 chances, while Value
does it with a success rate of 2.18% over this reference, so 35.51%. These numbers
increase with time, so that at a 12-month horizon, Value correctly estimates the tercile
of 12-month returns with a success rate of 4.41%.

Momentum also does a fair job at low horizons (1 to 6 months), but loses signifi-
cance at long horizons: at 12 months, Momentum is still able to beat the random pick
by 1.64%, but the estimate is no longer statistically significant. Volatility also shows
positive success rates, but they are significant only at lower horizons. Size is not able to
achieve statistically significant success rates. To some extent this confirms the findings
in Van Dijk (2011) and references therein, where the size premium is questioned (does
it still exist?). Our test is not meant to prove whether the premium exists or not. It
rather measures the goodness of the attached measure in predicting forward returns.

Multi-factor portfolios: A new factor? Limits of the static approach.
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The lack of significant predictive power may be due to large estimation errors (Lo and
MacKinlay, 1990) or strong dependence of the premium on market regime (Guidolin
and Timmermann, 2008), which does not entail the existence of a real premium paid
to the investors that hold small companies. On the other hand, the size premium is
significantly lower now than when it was studied by Banz (1981). The EW portfolio has
by far the lowest scores, if we consider that for size we can at least advocate its higher
volatility in the estimation. EW is able to beat random pick only at a 1-month horizon,
and even for this, the success rate is only 0.19%. At longer horizons, EW is not able to
forecast forward returns better than random pick.

Exhibit 6 collects the results of a similar analysis where we now let the number of buckets
in the factor construction vary from 2 to 10. The alphas are taken as in Equation (4.1)
so that for two buckets we will use α = [−1, 1], for three buckets α = [−1, 0, 1], for
four buckets α = [−1,−1/2, 1/2, 1] and so on. The rebalancing frequency is fixed at 3
months.

Buckets Size*** Value Momentum Volatility EW

2 -0.51%*** 0.97%*** -0.39%*** 0.99%*** -0.03%
3 -0.16%*** 2.63%*** 2.32%*** 1.10%*** -0.21%
4 -0.14%*** 2.73%*** 2.58%*** 1.14%*** -0.10%
5 -0.33%*** 2.61%*** 2.53%*** 1.34%*** -0.07%

10 -0.49%*** 1.82%*** 1.92%*** 1.11%*** -0.04%

Exhibit 6: Averages of Hcent for different factors and the EW portfolio with different
numbers of buckets in the factor construction. Significance: *** = 1% **
= 5% * = 10%. No stars = loading not significant.

It is remarkable how all factors, except Value, do not outperform random pick with only
two buckets. When we use only two buckets, the long and short legs are too diversi-
fied (each leg has roughly 750 stocks). With a higher number of buckets, Value and
Momentum are effective. Volatility also sees its success rates increase with the number
of buckets, showing that the volatility premium starts to appear when we are able to
discriminate between high volatility stocks from low volatility ones (Haugen and Heins,
1975; Haugen and Baker, 1991; Ang et al., 2006; Haugen and Baker, 2010; De Franco
et al., 2017). With 5 buckets, Volatility beats the random pick (which has a success rate
of 1/5 = 20%) by 1.34%. We still do not find any superior predictive power for Size
except for the 10 bucket version, where the success rate is 0.49%. This fact reflects the
asymmetric nature of this premium, as shown in Pettengill et al. (2002). Once again,
the EW portfolio is not able to show any significant predictive power. By increasing the
number of buckets, the EW portfolio dilutes so extensively the predictive power of each
single factor that, in the end, there is not enough useful information to differentiate it
from random pick.

The final test we propose tries to measure the ability of the factors to correctly predict

Multi-factor portfolios: A new factor? Limits of the static approach.
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forward returns at least in the extreme buckets. The idea behind this is that, most often,
spreads in stock performances are explained by specific stock characteristics when one
compares the lowest versus the highest quantile in other words, where the risk premium
is at its strongest. We modify Hcent in (4.4) in order to count only extreme buckets (by
restricting the summation over indexes j that correspond to those extreme buckets) and
changing the normalization term 1/l into (nb of extremes)/l2 to be coherent. Exhibit
7 collects the results when we consider factor construction based on 10 deciles, α =
[−1,−4/5,−3/5,−2/5,−1/5, 1/5, 2/5, 3/5, 4/5, 1] and let the number of extremes vary
from 1 to 5 (the case with 5 extremes corresponds to the initial Hcent). We observe that

Extremes Size*** Value Momentum Volatility EW

1 0.34%*** 1.27%*** 1.41%*** 0.82%*** 0.01%***
2 0.31%*** 1.40%*** 1.44%*** 0.92%*** 0.01%***
3 0.33%*** 1.48%*** 1.46%*** 1.02%*** 0.02%***
4 0.36%*** 1.59%*** 1.62%*** 1.10%*** 0.02%***

All 0.49%*** 1.82%*** 1.92%*** 1.11%*** 0.04%***

Exhibit 7: Averages of Hcent for different factors and the EW portfolio with different
numbers of extremes selected. Significance: *** = 1% ** = 5% * = 10%.
No stars = loading not significant.

for all factors the success rates are positive and significant if we restrict the analysis over
the extremes only. This result is in line with the fact that the premium is very strong at
the extreme (for example, very small caps versus very large caps, lowest volatility versus
highest volatility and so on). When we consider, for example, only 1 extreme (the
lowest deciles versus the highest decile), success rates go from 0.34% for Size to 1.41%
for Momentum, given that the reference of the random pick is 2/102 = 2%. Momentum
achieves then 2% + 1.41% = 3.41% predictive power, an increase of 70.5% over the
random pick. Values success rate is 1.27%, an increase of 63.5%. Volatilitys success rate
is 0.82%, or 41% in relative terms. The EW also achieves statistically significant results,
but they are very minor compared to the other factors. This test partially explains why
the EW ranks systematically lower than the other factor.

By equally weighting all the factors, most of the stock allocations will net out. In
the end, we will find positive weights on the stocks that are in the highest quantiles of
the majority factors, negative weights for those in the lowest quantiles of the majority of
factors, and a very scattered allocation in between. Since the factors premia are stronger
at the extremes, and the number of stocks that are at the same time in the highest (or
the lowest) quantile of the majority of factors is low, this automatically results in a loss
of predictive power.

4.4 Empirical results: the European case

We repeat the same analysis for the European case. The setup is similar except for
the data time period (from December 2000 to October 2017) and the use of prices in
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local currency for price-based measures (Volatility, Momentum and forward returns).
Our choice is motivated by the fact that the predictive power of standard characteristics
generally should exist at the local currency level while large swings in FX rates could
in principle change the picture. However, results when all prices are converted in EUR
remain in line with our findings.
Exhibit 8 compares with Exhibit 5 and shows the average Hcent scores for the factors
and the EW portfolio when the rebalancing frequency varies from 1 to 12 months and we
use terciles with α = [−1, 0, 1]. Like in the US case, we find in Europe a strong predictive
power for Value and Momentum, with a success rate ranging from 2.44% to 5.13% for
Value as the horizon increases and from 3.18% to 5.14% for Momentum. While Value
was also strong in the US, we observe that in the European case Momentum is even
stronger.

Frequency Size Value Momentum Volatility EW

1M -0.28% 2.44%*** 3.18%*** 1.26%*** 0.29%***
3M -0.26% 2.98%*** 3.75%*** 1.47%*** 0.55%***
6M -0.20% 3.87%*** 3.69%*** 2.19%*** 0.87%***

12M -0.12% 5.13%*** 5.14%*** 2.86%*** 1.49%***

Exhibit 8: Averages of Hcent for different factors and the EW portfolio at different
frequencies. Significance: *** = 1% ** = 5% * = 10%. No stars =
loading not significant.

Volatility has positive success rates at all frequencies and these rates increase at lower
frequencies, although the numbers are too noisy to get a statistically significant estimate.
As for the US, we have a similar picture for Size, if not worse. The success rate is never
significant and even negative. Finally, in contrast with the US, the EW portfolio shows
small but statistically significant success rates that increase from 0.29% at a 1-month
horizon to 1.49% at a 12-month horizon. Though positive, these numbers are significantly
lower than three of the four factors used. It seems that by equally weighing the factors,
we lose a significant proportion of the predictive power that each factor entails.

Buckets Size*** Value Momentum Volatility EW

2 -0.10% 2.07%*** 2.13%*** 1.04%*** 0.63%***
3 -0.26% 2.98%*** 3.75%*** 1.47%*** 0.55%***
4 -0.03% 3.34%*** 3.78%*** 1.67%*** 0.41%***
5 -0.17% 3.07%*** 3.60%*** 1.65%*** 0.26%***

10 -0.16% 2.27%*** 2.58%*** 1.47%*** 0.19%***

Exhibit 9: Averages of Hcent for different factors and the EW portfolio with different
numbers of buckets in the factor construction. Significance: *** = 1% **
= 5% * = 10%. No stars = loading not significant.

Exhibit 9 is the equivalent of Exhibit 6 for the European universe. We fix the frequency
at 3-month and let the number of buckets in the factor construction vary from 2 to 10,
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while the alphas are given in Equation (4.1). The results are very similar for Value
and Momentum, even if the success rates are higher for the European factors than for
their US counterparts. Volatility starts to achieve positive and significant success rates
when the number of buckets is sufficiently large, once again confirming that this specific
premium strengthens when we discriminate between very low and very high volatility
stocks. Size is not able to show positive success rates even with a very large number of
buckets: for 10 buckets it has a not significant 0.16% success rate, while the US version
shows a significant 0.49% (Exhibit 6). The EW portfolio has positive but low success
rates that naturally decrease when we increase the number of buckets, signaling that
equal weighting dilutes too extensively the power of each individual factor.

Finally, Exhibit Exhibit 10 reproduces the test in Exhibit 7 by removing the central
buckets in the calculation of Hcent. Results for Value, Momentum and Volatility are in
line with the US case: the success rate is significant and positive. Size has a positive
and significant success rate only when we consider the lowest and the highest decile (one
extreme), but it is not able to do better than the random pick starting from two extremes.
Finally, the EW achieves significant scores, but they are very small: for example with two
extremes considered (so four buckets in total, two on the lower side and two on the higher
side of the measure), the random pick has a H score of 4/100, Value obtains 5.68% (=4%
+ 1.68%), Momentum 5.96%(= 4%+1.96%), Volatility 5.08%(= 4%+1.08%) while EW
is only at 4.03%(= 4% + 0.03%).

Extremes Size*** Value Momentum Volatility EW

1 0.23%* 1.42%*** 1.74%*** 1.08%*** 0.01%***
2 0.19%* 1.68%*** 1.96%*** 1.08%*** 0.03%***
3 0.13%* 1.81%*** 2.04%*** 1.25%*** 0.04%***
4 0.19%* 2.02%*** 2.18%*** 1.32%*** 0.06%***

All 0.16%* 2.27%*** 2.58%*** 1.47%*** 0.19%***

Exhibit 10: Averages of Hcent for different factors and the EW portfolio with different
numbers of extremes selected. Significance: *** = 1% ** = 5% * = 10%.
No stars = loading not significant.

4.5 Discussion

When we compare the US and European tests, we observe the following:

• The EW portfolio, a new factor as per Definition 2.1, is a factor derived from a
measure that is not more powerful than a random pick when it comes to discrimi-
nating between low and high-performing stocks.

• In both US and Europe, Value and Momentum achieve the best success rates, with
Volatility slightly lower. In Europe, these three factors have stronger predictive
power than the US versions.
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• Size does not have a strong predictive power according to our Hcent measure. This
does not question the validity of the Size premium, as confirmed by the literature
which proves that there is a size/liquidity premium in US, Europe and international
markets. However, the very volatile nature of this premium, the strong correlation
it has with the business cycles and its lottery-like behavior make the estimations
of success rates quite noisy.

• This logic does not apply to the EW portfolio because it should dampen these
effects through diversification. But what we observe is that indeed the EW smooths
out the predictive power of each single factor so that its success rate, on average,
is not distinguishable from random pick.

Equal weighting (or more generally static combinations of factors) has its strengths and
investors are already considering this approach to build their multi-factor allocation.
Most of the time, the choice is driven by the ex-ante performance we can expect by
smoothing out factors premia. Furthermore, investors are aware of the difficulty to
time the factors (which are time varying, they depend on the market regime and are
influenced by the business cycle). However, investors should keep in mind that simple
static allocation, like equal weighting, is indeed a factor related to some synthetic measure
and that this measure is very poor when it comes to discriminating between good and
bad performers.

5 Conclusions

This work sheds new light on factor investing and multi-factor portfolio construction.
We are able to show that in a very general framework, static multi-factor allocations are
indeed new factors. It is then natural to assess to which extent these multi-factor port-
folios are able to increase the predictive power that is usually linked to standard factors.
Our empirical tests show that simple equal weighting usually dilutes too extensively the
predictive power of each single factor and, on average, we are not able to distinguish
it from a random pick. Equally weighing factors (as well as other static schemes) has
many merits − it is simple to understand, it diversifies risks, it smooths the premium
earned by each factor − and our research does not intend to diminish its interest from
a practical point of view. But investors must be aware that static multi-factors are fac-
tors in the sense that they translate a synthetic characteristic into portfolios of stocks.
Unfortunately, this new synthetic characteristic is not often better than a random pick.
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A Proof of Theorem 3.1

Proof. We will prove the result by assuming the following on the partitions defining each
factor:

A1 All factor partitions are of fixed size l > 0, and all s-th elements of each partition
have the same number of elements

since it simplifies the calculations. At the end of the proof we will show that we can
easily remove it, so that the proof is valid in its general form. From the definition of
factors in 2.1 we can write:

WMF
i :=

1

K

K∑
h=1

W h
i =

1

K

K∑
h=1

αh
jh(i)

lh
jh(i)

and from the fact that cardinality of each element of the partition is the same across
factor (Assumption A1) we can write:

WMF
i :=

1

K

K∑
h=1

α̂hjh(i)

where we simply defined α̂hs = αhs/ls. We can imagine α̂ as a l ×K matrix, where each
column contains the alphas defining the factor. If:

A :=
{
σi : {1, . . . ,K} → {1, . . . , l} | σi : (1, . . . ,K)→

(
j1(i), . . . , jK(i)

)}
(A.1)

then:

WMF
i :=

1

K

K∑
h=1

α̂jh(i) =
1

K

K∑
h=1

α̂hσi(h) := WMF (σi)

The map σi simply gives, for each factor (1, . . . ,K) the index of the relative measures(
C1
i , . . . , C

K
i

)
into their respective partitions. The set of all possible values for WMF is

simply given by:

Ω :=

{
WMF (σ) |WMF (σ) =

1

K

K∑
h=1

α̂hσ(h), σ ∈ A

}
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which can be written as Ω :=
{
β1 ≤ β2 ≤ · · · ≤ βM(K,l)

}
. We denote the cardinality of

Ω by M(K, l) which is bounded from above by n (indeed Ω can contain a lower number
of elements if some betas coincide). Let:

CMF
i :=

1

K

K∑
h=1

α̂hσi(h), σi ∈ A

This composite measure is built in a very efficient computational way:

1.
(
C1
i , . . . , C

K
i

)
→
(
j1(i), . . . , jK(i)

)
: from the vector of measures of each stock,

compute the indexes of the respective buckets of their partitions.

2.
(
j1(i), . . . , jK(i)

)
→ σi: build the corresponding map in A

3. σi → CMF
i : compute the composite measure.

The partition set LMF is very straightforward: LMF
s = {βs} for each βs ∈ Ω and

lMF
s = card

{
i ∈ {1, . . . , n} | CMF

i = βs
}

. Finally

αMF
s = lMF

s ∗ βs, s = 1, . . . ,M(K, l)

Putting all together, we finally obtain

WMF
i = WMF (σi) = CMF

i = βsi =
αMF
si

lMF
si

where si is the index of CMF
i in the partition LMF , i.e. CMF

i ∈ Lsi , in other words
si = jMF

i . We have then built a measure
(
CMF

)
, a partition

(
LMF

)
and a vector of

alphas
(
αMF

)
such that WMF is the corresponding factor, which concludes the proof.

Let us now turn to the technical assumption A1. Each factor is characterized by its
partition:

Factor1 →
{
L1
1, . . . , L

1
l1

}
Factor2 →

{
L2
1, . . . , L

2
l2

}
. . .

FactorK →
{
LK1 , . . . , L

K
lK

}
l1, . . . , lK being the size of each partition. Assume that the first partition has the maxi-
mum size l = l1 = maxh lh. We can simply extend each partition from 2 to K at size l
by dividing any non-singleton element into a smaller subset until the size of the parti-
tion reaches l. If the subset does not have enough elements inside it, we can repeat the
operation with another one. We should then adjust the vector of respective alphas by
adding new entries. As such, there is no loss of generality to assume that all partitions
are made of l elements.
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The second part of Assumption A1 assumes that L1
s, L

2
s, . . . , L

K
s have the same number

of elements. In other words, for each factor, the number of stocks whose measures fall
into the s-th element of the partition is the same. If this is not the case, we can calculate
the greatest common divisor of the different sizes:

ls := GCD
{
lhs | h = 1, . . . ,K

}
and then for each s-th element whose size is not ls we can divide equally into subsets
of size ls. Once again, we should then adjust the vector of respective alphas by adding
new entries. At the end of the two-step procedure, the new partitions are all of size
l′ ≥ l (because we may have created more subsets) but all corresponded buckets for each
factor have the same size. This proves that Assumption A1 is not binding.

B Proof of Corollary 3.2

Proof. Each factor is characterized by a specific vector of alphas αh. Simple re-adjustments
give us

WMF
i :=

K∑
h=1

πhW
h
i =

1

K

K∑
h=1

W̃ h
i

where W̃ h are the stock weights of a new factor derived from W h, for which we simply
modified the relative αh as follows:

α̃h = K ∗ πh ∗ αh

Indeed the multi-factor WMF is the equal weighting of new adjusted factors, and then
by Theorem 3.1 is itself a factor.
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services providers which hold a license from the Isle of Man Financial Services Authority or insurers authorised under section 8 of the 
Insurance Act 2008. 
In the DIFC: Provided in and from the DIFC financial district by Natixis Investment Managers Middle East (DIFC Branch) which is 
regulated by the DFSA. Related financial products or services are only available to persons who have sufficient financial experience 
and understanding to participate in financial markets within the DIFC, and qualify as Professional Clients or Market Counterparties as 
defined by the DFSA. No other Person should act upon this material.  Registered office: Office 603 - Level 6, Currency House Tower 
2, PO Box 118257, DIFC, Dubai, United Arab Emirates. 
In Japan: Provided by Natixis Investment Managers Japan Co., Ltd., Registration No.: Director-General of the Kanto Local Financial 
Bureau (kinsho) No. 425. Content of Business: The Company conducts discretionary asset management business and investment 
advisory and agency business as a Financial Instruments Business Operator. Registered address: 1-4-5, Roppongi, Minato-ku, Tokyo. 
In Taiwan: Provided by Natixis Investment Managers Securities Investment Consulting (Taipei) Co., Ltd., a Securities Investment 
Consulting Enterprise regulated by the Financial Supervisory Commission of the R.O.C. Registered address: 34F., No. 68, Sec. 5, 
Zhongxiao East Road, Xinyi Dist., Taipei City 11065, Taiwan (R.O.C.), license number 2018 FSC SICE No. 024, Tel. +886 2 8789 
2788.
In Singapore: Provided by Natixis Investment Managers Singapore (name registration no. 53102724D) to distributors and 
institutional investors for informational purposes only.  Natixis Investment Managers  Singapore is a division of Ostrum Asset 
Management Asia Limited (company registration no. 199801044D). Registered address of Natixis Investment Managers Singapore: 5 
Shenton Way, #22-05 UIC Building, Singapore 068808.
In Hong Kong: Provided by Natixis Investment Managers Hong Kong Limited to institutional/ corporate professional investors only. 
In Australia: Provided by Natixis Investment Managers Australia Pty Limited (ABN 60 088 786 289) (AFSL No. 246830) and is 
intended for the general information of financial advisers and wholesale clients only .  
In New Zealand: This document is intended for the general information of New Zealand wholesale investors only and does not 
constitute financial advice. This is not a regulated offer for the purposes of the Financial Markets Conduct Act 2013 (FMCA) and is 
only available to New Zealand investors who have certified that they meet the requirements in the FMCA for wholesale investors. 
Natixis Investment Managers Australia Pty Limited is not a registered financial service provider in New Zealand.
In Latin America: Provided by Natixis Investment Managers S.A. 
In Uruguay: Provided by Natixis Investment Managers Uruguay S.A., a duly registered investment advisor, authorised and 
supervised by the Central Bank of Uruguay. Office: San Lucar 1491, oficina 102B, Montevideo, Uruguay, CP 11500. The sale or offer 
of any units of a fund qualifies as a private placement pursuant to section 2 of Uruguayan law 18,627. 
In Colombia: Provided by Natixis Investment Managers S.A. Oficina de Representación (Colombia) to professional clients for 
informational purposes only as permitted under Decree 2555 of 2010. Any products, services or investments referred to herein are 
rendered exclusively outside of Colombia. This material does not constitute a public offering in Colombia and  is addressed to less 
than 100 specifically identified investors. 
In Mexico: Provided by Natixis IM Mexico, S. de R.L. de C.V., which is not a regulated financial entity, securities intermediary, or an 
investment manager in terms of the Mexican Securities Market Law (Ley del Mercado de Valores) and is not registered with the 
Comisión Nacional Bancaria y de Valores (CNBV) or any other Mexican authority. Any products, services or investments referred to 
herein that require authorization or license are rendered exclusively outside of Mexico. While shares of certain ETFs may be listed in 
the Sistema Internacional de Cotizaciones (SIC), such listing does not represent a public offering of securities in Mexico, and 
therefore the accuracy of this information has not been confirmed by the CNBV. Natixis Investment Managers is an entity organized 
under the laws of France and is not authorized by or registered with the CNBV or any other Mexican authority. Any reference 
contained herein to “Investment Managers” is made to Natixis Investment Managers and/or any of its investment management 
subsidiaries, which are also not authorized by or registered with the CNBV or any other Mexican authority.
The above referenced entities are business development units of Natixis Investment Managers, the holding company of a diverse 
line-up of specialised investment management and distribution entities worldwide. The investment management subsidiaries of 
Natixis Investment Managers conduct any regulated activities only in and from the jurisdictions in which they are licensed or 
authorized. Their services and the products they manage are not available to all investors in all jurisdictions. It is the responsibility 
of each investment service provider to ensure that the offering or sale of fund shares or third party investment services to its clients 
complies with the relevant national law. The provision of this material and/or reference to specific securities, sectors, or markets 
within this material does not constitute investment advice, or a recommendation or an offer to buy or to sell any security, or an offer 
of any regulated financial activity. Investors should consider the investment objectives, risks and expenses of any investment 
carefully before investing. The analyses, opinions, and certain of the investment themes and processes referenced herein represent 
the views of the portfolio manager(s) as of the date indicated. These, as well as the portfolio holdings and characteristics shown, are 
subject to change. There can be no assurance that developments will transpire as may be forecasted in this material. Past 
performance information presented is not indicative of future performance. Although Natixis Investment Managers believes the 
information provided in this material to be reliable, including that from third party sources, it does not guarantee the accuracy, 
adequacy, or completeness of such information. This material may not be distributed, published, or reproduced, in whole or in part.
All amounts shown are expressed in USD unless otherwise indicated.
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